非接触式三次元測定機による製品の品質検査

金型および成型品などの実物をメッシュデータへ変換する方法や、この変換結果と設計データを比較検証するための測定技術について紹介します。

三次元測定機には接触式と非接触式があり、接触式は、プローブを測定物に接触させて、基準となる点から測りたい点のX、Y、Z座標の位置確認によって測定を行います。

非接触式は、CCDカメラの画像やレーザを 用いて行われます。したがって、設計値と製品 寸法との座標比較をする場合、非接触式の精度 は接触式に及びませんが、膨大な測定値を短時 間で取得できる利点があります。具体的には、 立体モデルを三次元データ化するための測定装 置として、製品モデルや金型などの測定に広く 使われています。

ここ数年、非接触式三次元測定機は、製品開発全体の期間短縮や、複雑形状の設計データを 検証する目的に使われています。

非接触式三次元測定機の特徴

城南支所に設置されている非接触式三次元測定機は、2つのCCDカメラ測定による方式で、可搬性があります。表1に仕様を、図1に概観図を示します。

光学方式のシステムは、左右それぞれの画像から取り出した光の輝度(コントラスト)や屈折度などの測定データを、複数の測定原理を組み合わせてCCD画素の位置を特定する方式です。また、特定された部分は、三角測量の原理を利用して、三次元座標位置が計算されます。

測定機の特徴は、センサの視野角内において 3個以上の参照点を認識することで、測定物の三次元位置が定義できる点です。図2に示す測定例 は、参照点(レファレンスポイント)を測定物 に貼り付けてあります。また、膨大な撮影デー タの合成は、専用ソフトウエアを使って自動処 理します。

表1 非接触式三次元測定機の仕様 (Gom社 ATOS)

画素数 419万画素

測定範囲 レンズ交換により可変

測定精度 0.004mm~0.076mm

(CCD特性による理論値)

点間ピッチ 0.05mm~0.98mm

図1 非接触式三次元測定機の概観図 プロジェクタ(測定物へ縞模様の光を照射するために用いられる)と2個のCCDカメラにより物体を写真撮影します

メッシュ生成の手順

(1)撮影準備

測定対象にレファレンスポイントのシールを 貼ります。測定対象が金属反射するものや黒く て暗い材質の場合は、白いスプレーの塗布が必 要です。

(2)画像データの取り込み

測定対象物上に点の空間座標を決定するため、 必要な写真撮影を繰り返します。

(3)メッシュ牛成処理

複数回の撮影によって発生したオーバラップ は、ソフトウエアを用いて取り除きます。ある いは、自動合わせ機能を用いて各任意方向の撮 影データを合成し、メッシュ生成を行います

その後、必要に応じて穴埋めやメッシュデー 夕修正などを行います。

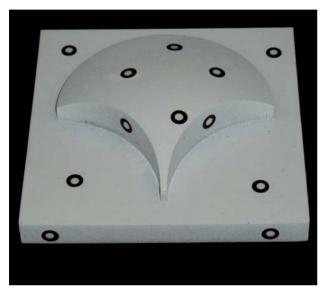


図2 参照点を貼り付けた測定物 液状の紫外線硬化樹脂に紫外線レーザを走査し、硬化さ せた立体モデル(光造形装置で製作)の表面に、レファ レンスポイント(黒地に白丸)を貼ってあります

品質検査の実施例

当システムによる品質検査では、CADデー タを基準として、測定データを重ね合わせます。

両者の差分をカラーマップ表示して修正箇所 を見つけます。図3は、光造形装置で作製した立 体モデルのそりや変形などの偏差表示です。図4 は、任意断面における偏差表示です。

カラーマップ表示は、こうした成形品の品質 検査に限らず、金型や切削加工品などの品質検 査にも利用されています。具体的な例として、 製品の形状変化が発生した場合、金型と金型か ら作成された製品をそれぞれ測定し、カラーマ ップ比較により製品形状および金型の品質を見 極めます。

なお、CCD特性による理論値の測定精度は、 0.004mm~0.076mmの範囲です。この値は、 測定対象の形状や表面状態、および測定条件

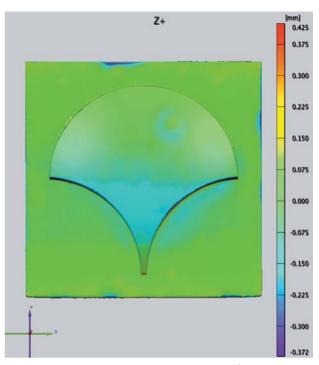


図3 偏差のカラーマップ図 CADデータを基準とした測定データのそりや変形など を表示

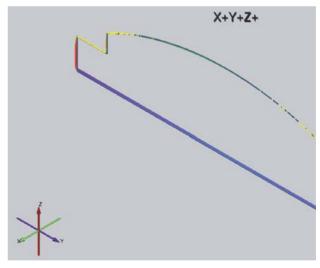


図4 断面のカラーマップ図 CADデータを基準とした任意断面の偏差を表示

の違いによって影響されます。

製品開発の効率化や、複雑形状を対象とした 設計データの取得などにご利用ください。

事業化支援部 < 城南支所 >

西岡孝夫 TEL 03-3733-6233 E-mail:nishioka.takao@iri-tokyo.jp